I ! ! . UCRL-CONF-209265

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

Middleware for Astronomical
Data Analysis Pipelines

Abdulla G., Liu D., Garlick J., Miller M.,
Nikolaev S. Cook K., Brase J.

January 26, 2005

ADASS XIV, Pasadena, California
October 24-27, 2005

ADASS XIIT
ASP Conference Series, Vol. XXX, 2004
F. Ochsenbein, M. Allen and D. Egret eds.

Middleware for Astronomical Data Analysis Pipelines

Ghaleb Abdulla, Jim Garlick, Marcus Miller, Sergei Nikolaev, Kem
Cook, Jim Brase

Lawrence Livermore National Laboratory

David Liu
University of California, Berkeley

Abstract. In this paper we describe our approach to research, develop,
and evaluate prototype middleware tools and architectures. The devel-
oped tools can be used by scientists to compose astronomical data analysis
pipelines easily. We use the SuperMacho data pipelines as example appli-
cations to test the framework. We describe our experience from schedul-
ing and running these analysis pipelines on massive parallel processing
machines. We use MCR, a Linux cluster machine with 1152 nodes and
Luster parallel file system as the hardware test-bed to test and enhance
the scalability of our tools.

1. Introduction

Large sky surveys present new challenges in data management, such as the
increased quantity and pace of data produced by new instruments, the need to
process it in near real-time for alerts, and the inclusion of time domain data in
the science. These challenges are expected to be met with sophisticated pipelines
and database systems running on high performance parallel computers.

Some of the complexity of these software systems can be moved into mid-
dleware which provides a data-driven execution framework for pipelines and
an abstraction layer for the operating system interfaces of a parallel computer.
Data-centric middleware can offer the following benefits:

e Data flow is described using a data description language (DDL) instead of
imperative scripts. The DDL is easier to write and maintain, it expresses
more information than scripts, and provides mechanisms for formalizing
the description of the interfaces of individual algorithms which is good
software engineering practice and promotes modularity and reuse.

o With knowledge of pipeline data flow and data dependencies in the system,
the middleware can automatically manage the details of data-parallel' ex-
ecution.

'In this context, data-parallel refers to parallel execution that is possible due to a lack of
dependencies in the data.

2 Abdulla et al.

e Key aspects of the parallel operating system, for example MPI job launch
and monitoring, are abstracted and thus allowed to change over the life of
the survey without impacting the entire system.

e Data provenance and memoization services of the middleware can minimize
the resources required to recompute science data when some but not all of
the pipeline software is incrementally improved.

e When possible, the data is self-describing and not coupled to the algo-
rithms.

We are simultaneously evaluating current pipeline technology and new re-
search in data-centric middleware. In addition we are experimenting with ef-
ficient ways to modularize algorithms. In order to understand the challenges,
we have initially focused on porting the SuperMACHO data set and pipelines
to large scale LLNL platforms such as MCR?, and have attempted to run it
in conjunction with two prototype software packages: the GridDB system from
Berkeley (Liu 2003), a grid-oriented tool with many of the features listed above;
and Industrial Strength Pipes (ISP) from Livermore (Garlick 2004), a simple
pipeline construction tool with parallel execution capability. These two systems
are described below.

2. GridDB

As illustrated in Figure 1, GridDB provides a veneer, or overlay, on top of ex-
isting process-centric grid services (i.e. globus and condor) that enables clients
to create and manage grid computations, as well as interact with their results.
GridDB provides a host of benefits, including declarative interfaces, type check-
ing, interactivity, data provenance and memoization, which is the ability to store
and retrieve, rather than unconditionally execute, computations. GridDB works
on top of process-centric middleware, rather than replacing it. Consequently,
users can continue employing their pre-existing imperative data processing codes
and programming knowledge.

The GridDB framework is a good starting point for achieving many of our
goals: modularity, data-centricity, efficient execution and support for real-time
processing. We are leveraging it to test the viability of these concepts in realistic
scenarios. As such, we expanded GridDB’s implementation by porting it onto
MCR. We also specified the SuperMACHOQO image processing application within
the GridDB framework.

While GridDB provides many benefits derived from its data-centricity, it
has one major liability: it incurs performance penalties due to its reliance
on a database system (GridDB can operate on top of any SQL92-compliant
database). Because there are penalties associated with accessing a database
system, pipelines executed through GridDB may execute slower than pipelines
executed through process-centric middleware.

Our initial experiments with the GridDB prototype (which uses PostgreSQL
as its database) indeed exhibits performance problems, for example boundary
crossings between GridDB and its database component lengthen the critical

2MCR is a 2304-CPU Xeon-based Linux cluster at LLNL.

Middleware for Astronomical Data Analysis Pipelines 3

data-centric client

process-centric

) data-centric interface:
client

SQL, tuples

~ scientific
apparatus

1
|
I
|
I

distributed grid resources

Figure 1. GridDB Architectural Overview

path in pipeline execution. Additionally, our prototype has revealed perfor-
mance problems in boundary crossings between GridDB and the file system.
Currently, we are optimizing such boundary crossings using a series of optimiza-
tion techniques, include caching, batching and asynchronous processing. We
also plan on implementing a framework for prioritization of server tasks during
CPU-bound processing.

3. Industrial Strength Pipes

Industrial Strength Pipes (ISP) is a prototype pipeline construction set for par-
allel systems (it is not a complete middleware solution). It allows filters to be
constructed by binding algorithms to ISP library calls. The filters are compiled
as separate executables that can be chained together into a pipeline using a
UNIX shell in the same manner as regular UNIX pipelines. Instead of carrying
unstructured data, the pipes carry XML which contains a stream of work unit
data structures. Each filter reads a stream of work units on its standard input,
and writes a stream of work units to its standard output.

The algorithm in a filter is registered as a callback that runs once per work
unit. The work unit contains two types of data: metadata, passed by value, and
files, passed by reference. Multiple files and metadata may be present in a the
work unit, indexed by a string key. The algorithm may use ISP calls to read,
write, or modify some or all of the files and metadata referenced in the work
unit by key. After the algorithm finishes, the work unit is passed downstream
for subsequent processing by other filters.

In an image processing application, for example, a filter might turn a collec-
tion of raw image files into a stream of work units containing file references. The
next filter might, for each work unit, read the raw image and write a calibrated
image and some metadata, which are added to the work unit. A subsequent fil-
ter might read the calibrated image and metadata and produce a list of features

4 Abdulla et al.

in a file which is added to the work unit. The last filter might add pertinent
data products to a database and clean up.

Unless otherwise noted by the algorithm when it registers itself, work units
are assumed to be independent of one another and can be processed out of order.
On a parallel system, ISP exploits this implicit data-parallelism. As soon as a
work unit becomes available as input to a filter, ISP’s execution engine submits
a request to ISP’s parallel scheduler to allocate CPU’s to run the algorithm.
As CPU’s become available, the scheduler executes the requests using existing
process-centric middleware in FIFO order, passing the XML work unit to and
from the remote process. Because files are passed by reference, this strategy
presumes that file references can be followed on any node of a parallel system (a
global file system), and that a file written and closed on one node can be safely
opened and read on another (close-to-open cache coherency).

A work unit can contain multiple file references and metadata that are
indexed by a string key. While every filter can produce, consume, and read
(without consuming) files and metadata by key, filters need not access all of
the files and metadata in the work unit. Some can pass through to downstream
filters. Data cannot, however, flow upstream, thus the flow of data in the pipeline
is a directed, acyclic graph.

We have successfully run data through several of the algorithms of the Su-
perMACHO pipeline wrapped up as ISP filters on MCR. This test has demon-
strated that ISP neatly hides the details of parallel execution on a cluster, and
that no scaling issues exist with ISP at least up to the 64 CPU level (we have
not tested with more CPU’s yet). It has also shown that leveraging the UNIX
pipe abstraction has some useful benefits: other UNIX tools can be brought to
bear on the XML stream for debugging, and the pipeline can be developed and
tested in a serial (e.g. laptop) environment without any of the infrastructure
needed to run in parallel present to complicate the process.

4. Conclusions

Our initial implementation of example astronomy pipelines using our proposed
middleware is promising. We are in the process of optimizing the GridDB im-
plemenation to provide users with efficient data- centric services. At the same
time we are working on adding more data-centric functionality to ISP. ISP or a
similar system may be useful as the interface between algorithms and a system
like GridDB and we are currently exploring the benefits of the this idea.

ISP’s parallel scheduler may open up avenues for research on pipeline aware
schedulers. We anticipate that there is an opportunity to design scheduling
algorithms that can schedule available resources in the “best” way when there
are not enough CPU’s to run all the pending work.

References

Liu, D., Franklin, M., Parekh, D. 2003, SIGMOD
Dean, J., Ghemawat, S. 2004, OSDI
Garlick, J. 2004, LLNL Presentation, UCRL-PRES-209205

